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This paper is devoted to the study of local controllability of chemical reactions. After a
brief introduction we give a sufficient condition of local controllability of chemical reactions.
We show the use of our condition on a series of examples. In the last section we mention
some unsolved problems.

1. Introduction

Classical control theory is mainly concerned with linear models. The equations
of chemical kinetics are essentially nonlinear. Therefore, in order to treat the prob-
lem of controllability of reactions (so important from the point of view of chemical
engineering science) one has to rely upon recent results on local controllability. As
invariant manifolds (originated in conservation relations) also play an important role in
kinetics, see Deák et al. [1], we use results on local controllability within an invariant
manifold [10].

The present approach is theoretical. Similar approaches have been initiated by
Samardzija [8], who introduced another kind of controllability and only investigated a
special class of second-order reactions, and by Ramakrishna et al. [7], who investigated
linear models arising in molecular dynamics by Lie algebraic methods. An interesting
experimental approach has been initiated by Petrov et al. [6].

The structure of our paper is as follows. In section 1 we collect the basis of
the mathematical model of chemical reactions. We recall the necessary part of the
mathematical theory of controllability as well. Section 2 contains a general sufficient
condition of local controllability of reactions. Section 3 presents a series of examples.
Finally, section 4 discusses the results and formulates some open problems.

1.1. The model

Let us consider a well-mixed vessel of constant volume at constant temperature
and pressure. Suppose the vessel contains a finite number of chemical components
or species. Among these species chemical reactions take place and the quantities of
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the components change. We are interested in the time evolution of the quantities of
chemical components.

The usual way of displaying a complex chemical reaction is as follows:

M∑
m=1

α(m, r)X (m)
k(r)−→

M∑
m=1

β(m, r)X (m) (r = 1, . . . R). (1)

Here M is the number of chemical components, R is the number of reaction steps, and
X (m) is the mth chemical component. The nonnegative integers α(m, r) and β(m, r)
are the stoichiometric coefficients, and the positive real numbers k(r) are the reaction
rate constants. Let us denote the M ×R matrices obtained from α(m, r) and β(m, r)
with α and β, respectively, and let γ := β − α.

The usual, continous time, continous state deterministic model of the mass action
type of reaction (1) is the differential equation

ẋm =
R∑
r=1

(
β(m, r)− α(m, r)

)
k(r)

M∏
m′=1

xα(m′,r)
m′ (m = 1, . . . ,M ), (2)

where xm(t) is to be interpreted as the concentration of the species X (m) at time t.
Equation (2) is also said to be induced by reaction (1), it is the induced kinetic
differential equation of (1). It is known that the set RM

+ , i.e., the set of vectors having
nonnegative coordinates, is invariant of every induced kinetic differential equation.
As we mentioned, we are interested in invariant manifolds as well. Let us denote the
subspace spanned by the columns of matrix γ with S(γ). Let x0 be an arbitrary vector
in RM

+ and consider S(γ) + x0. The set obtained by (S(γ) + x0) ∩ RM
+ is said to be

the reaction simplex belonging to x0. It is known that every reaction simplex is an
invariant manifold of (2).

1.2. Controllability

From a technical point of view it is very important to control a chemical reaction.
Furthermore, if we can control a reaction by changing a single rate constant we may
realise the control by changing the temperature.

A well-known theorem on nonlinear systems says that, if the system, obtained
by linearization around an equilibrium, satisfies the Kalman rank condition, then the
nonlinear system is locally controllable into the equilibrium. Varga [10] extended this
result to systems with an invariant manifold. We recapitulate his results.

Let n, r ∈ N, f ∈ C1(Rn×Rr, Rn), (x∗,u∗) ∈ Rn×Rr such that f (x∗,u∗) = 0.
Fix a T > 0 and, for every ε > 0, define

Uε :=
{
u ∈ Lr∞[0,T ]:

∣∣u(t)
∣∣ 6 ε for a.e. t ∈ [0,T ]

}
.

It is known that there exists an ε0 > 0 such that, if

z ∈ Rn, |z − x∗| < ε0, u ∈ Uε0 ,
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then there is a unique absolutely continuous function x ∈W n
11[0,T ] with

(i) ẋ(t) = f (x(t),u∗ + u(t)) for a.e. t ∈ [0,T ],

(ii) x(0) = z.

Definition 1. For k ∈ {1, . . . ,n}, S ⊆ Rn is said to be a regular k-dimensional
submanifold, if there exist an open set G ⊆ Rn and a function Φ ∈ C1(G, Rn−k) such
that S = Φ−1(0) and, for all x ∈ G, RΦ′(x) = Rn−k.

Now fix an arbitrary ε ∈ (0, ε0].

Definition 2. The above S is said to be a positively ε-invariant manifold of system (i)
at x∗, if z ∈ S, |z − x∗| < ε and u ∈ Uε imply that, for x in (i) and (ii), we have
x(t) ∈ S (t ∈ [0,T ]).

Let S be a positively ε-invariant manifold of (i) at x∗.

Definition 3. System (i) is said to be locally controllable in S into x∗ ∈ S with respect
to Uε, if there exists an open neighbourhood G(x∗) of x∗ in Rn with the property that,
for every z ∈ G(x∗) ∩ S, there is a u ∈ Uε such that, for the solution x of the initial
value problem (i)–(ii), we have x(T ) = x∗.

Now define A := ∂xf (x∗,u∗) and B := ∂uf (x∗,u∗). Varga [10] proved the
following theorem.

Theorem 4. Let S ⊆ Rn be a regular k-dimensional submanifold which is a positively
ε-invariant manifold of (i) at x∗ with some ε ∈ (0, ε0]. Then the condition

rank
[
B|AB| · · · |An−1B

]
= k

implies that (i) is locally controllable in S into x∗ with respect to Uε.

2. General results

It is easy to see that every reaction has at least one positively ε-invariant manifold,
namely RM

+ , which has dimension M . In some cases, there are other ε-invariant
manifolds even with smaller dimension than M – as a consequence of conservation
laws (cf. [1]). Thus we can apply in every case the condition of Varga.

2.1. Notations

We investigate the controllability of reactions in the following way. We choose
the reaction rate constants as control parameters by taking k(r) = 1+ur . In every case
we take u∗r = 0 for r = 1, . . . ,R, i.e., we are interested in controlling the system into an
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equilibrium belonging to the system where every reaction rate constants are equal to 1.
Such a reaction is said to be an uncontrolled reaction, and the corresponding induced
kinetic differential equation is said to be an uncontrolled system. In the following
we consider equilibrium points corresponding to uncontrolled systems or reactions.
Matrices A and B will be calculated at (x∗,u∗), where x∗ is an equilibrium of the
reaction where every reaction rate constant is equal to 1, i.e., x∗ is an equilibrium
of the uncontrolled system, and u∗ is defined as above. We require that ε satisfy the
condition ε < min{ε0, 1}, which yields that the controlled reaction rate constants are
always larger than zero. In the following we simply say that a reaction is locally
controllable if it satisfies definition 3 with x∗ and u∗ defined above.

2.2. Main theorem

Matrix B can be calculated easily because the right-hand side of an induced
kinetic differential equation is linear in u. Now we formulate how rank(B) can be
obtained without explicitly calculating matrix B for each special case. The following
theorem can be proved.

Theorem 5. Suppose that for k(r) = 1 (r = 1, . . . ,R) the induced kinetic differential
equation of (1) has a positive equilibrium point x∗. Then

rank(B) = rank(γ).

Proof. Let k := rank(γ). Without loss of generality we can assume that the first k
columns of γ are linearly independent. Then the corresponding reaction steps are the
following:

M∑
m=1

α(m, 1)X (m)
1+u1−→

M∑
m=1

β(m, 1)X (m),

...
M∑
m=1

α(m, k)X (m)
1+uk−→

M∑
m=1

β(m, k)X (m).

Thus the induced kinetic differential equation has the form

ẋ1 =
(
β(1, 1)− α(1, 1)

)
(1 + u1)

M∏
m′=1

xα(m′,1)
m′ + · · ·

+
(
β(1, k)− α(1, k)

)
(1 + uk)

M∏
m′=1

xα(m′ ,k)
m′ + g1(x1, . . . ,xM ),

...
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ẋM =
(
β(M , 1) − α(M , 1)

)
(1 + u1)

M∏
m′=1

xα(m′ ,1)
m′ + · · ·

+
(
β(M , k)− α(M , k)

)
(1 + uk)

M∏
m′=1

xα(m′,k)
m′ + gM (x1, . . . ,xM ),

where the functions gi, i = 1, . . . ,M , are independent from u1, . . . ,uk. Thus, as an
easy calculation shows, the first k columns of matrix B are the following:

(β(1, 1) − α(1, 1))a1

(β(2, 1) − α(2, 1))a1
...

(β(M , 1) − α(M , 1))a1

 , . . . ,


(β(1, k) − α(1, k))ak
(β(2, k) − α(2, k))ak

...
(β(M , k)− α(M , k))ak

 ,

where the positive constants a1, . . . , ak can be obtained by putting the coordinates
x∗1, . . . ,x∗M of the positive equilibrium x∗ into the expressions

M∏
m′=1

(
x∗m′
)α(m′ ,1)

, . . . ,
M∏

m′=1

(
x∗m′
)α(m′,k)

.

Let us denote by Bk the matrix with the above vectors as columns. Now it can be
seen that

Bk = γk · diag(a1, . . . , ak),

where diag(a1, . . . , ak) is the diagonal matrix having a1, . . . , ak as its diagonal ele-
ments, and γk is the matrix obtained from matrix γ by taking only the first k columns.
Since det(diag(a1, . . . , ak)) 6= 0 and rank(γk) = k, it follows that rank(Bk) = k and
rank(B) > k. Suppose now that rank(B) > k. Then there exists a column, say the
(k + 1)th, of matrix B which is linearly independent from the columns of matrix Bk.
If we add this (k+ 1)th column of matrix B to matrix Bk to obtain Bk+1 having rank
k + 1 we get the following:

Bk+1 = γk+1 · diag(a1, . . . , ak, ak+1),

where γk+1 is an M × (k + 1) matrix which can be obtained from γ by taking only
the first k + 1 columns. Using again the fact that det(diag(a1, . . . , ak, ak+1)) 6= 0, it
implies that rank(γk+1) = k + 1. Thus we get that the 1st, the 2nd, . . . , the kth and
the (k+1)th columns of matrix γ are linearly independent, which is a contradiction. �

We remark that the condition of positivity of the equilibrium x∗ is indispensable to
guarantee rank(B) = rank(γ). We will see an example in section 3.4 where rank(B) 6=
rank(γ). Existence of a positive equilibrium is implied for reversible systems [5,9]
and for weakly reversible systems of zero deficiency [3].
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Corollary 6. Assume that a given reaction has a positive equilibrium and rank(γ) = M .
Then the reaction is locally controllable in RM

+ .

Proof. The conditions imply rank(B) = M ; thus rank[B|AB| · · · |AM−1B] = M ,
and the condition of local controllability is satisfied. �

Corollary 7. Suppose that a given reaction has a positive equilibrium and the column
space of matrix B is an invariant subspace of matrix A. Then the reaction is locally
controllable in the reaction simplex belonging to the positive equilibrium.

Proof. Since every reaction simplex is independent from the reaction rate constants,
it is clear that every reaction simplex is an ε-invariant manifold of the reaction with
arbitrary ε. The dimension of a reaction simplex is equal to the rank of matrix γ. Using
our theorem we obtain rank(B) = rank(γ), and using the condition that the subspace
spanned by the columns of B is invariant under the multiplication of matrix A we
obtain rank[B|AB| · · · |AM−1B] = rank(B); thus the condition of local controllability
in an invariant manifold is satisfied. �

We remark that theorem 5 cannot only be applied for mass action type models.
We used during the proof only the properties that the dependence on u is linear and
the obtained constants a1, . . . , aR are positive. We will see a non mass action type
example fulfilling these conditions in section 3.5.

2.3. Reversibility

Next we study reversibility. Let us start with some notation. We will consider
reactions with at least one positive equilibrium when all reaction rate constants are
equal to 1. Assume that if we make a reaction step reversible (i.e., if we take the
reversible closure of the reaction), the obtained reaction also has a positive equilibrium,
say x∗∗, when all reaction rate constants are equal to 1. Let us denote the “new”
matrix B of the obtained reaction by B̃, where B̃ is calculated at (x∗∗,u∗). The
following theorem can be proved.

Theorem 8. Let us assume that a given reaction has a positive equilibrium. If we make
a reaction step reversible and the obtained reaction also has a positive equilibrium then
rank(B̃) = rank(B).

Proof. It can be seen that if we make a reaction reversible then matrix rank(γ) =
rank(γ̃), where γ̃ is the γ matrix of the obtained reaction. Since the obtained reaction
also has a positive equilibrium, using theorem 5 we get that rank(B̃) = rank(B). �

We remark that it is possible that the rank of matrix B increases as we make a
reaction step reversible. For example, let us consider the following reaction:

X → Y.
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This reaction has no positive equilibrium. In every equilibrium concentration, x∗1 = 0.
If we calculate matrix B in an equilibrium x∗ = (0, a), u∗ = 0, where a > 0 constant,
then we get the zero vector having zero rank. But if we make the only reaction step
reversible to obtain the reaction

X → Y ,

Y → X ,

which has a positive equilibrium, and if we now calculate matrix B̃ in an equilibrium
x∗∗ = (a, a), u∗ = (0, 0), where a > 0 constant, then we get

B̃ =

(
−a a
a −a

)
,

which has rank 1.

2.4. Reduction of the number of control parameters

From the technical point of view it is extremly important to reduce the number
of control parameters. Up till now we have controlled every reaction rate constants.
Next we investigate when we can control the system using a single parameter. We
restrict ourselves to study only dimension 2 and controllability in R2

+. If we control
only one parameter then matrix B is reduced to a column vector. Without loss of
generality we can assume that the first coordinate of B is not zero. Let us denote

B =

(
b1

b2

)
and

A =

(
a11 a12

a21 a22

)
.

We investigate the question: when will B and AB be linearly independent? We can
answer this question easily. If we choose arbitrary a11, a12 and a22, the only constraint
of choosing a21 is

a21 6=
b2

b1

(
a11b1 + a12b2

b1
− a22

)
. (3)

Thus, if we calculate vector B and matrix A and if the elements of A satisfy the
above condition then we can control the reaction by controlling only the reaction
corresponding to vector B.

3. Examples

In this section we investigate several formal chemical reactions. Our standard
reference is [2] and the definition of the CIMA reaction (section 3.5) can be found
in [4]. We are interested in the controllability of these reactions.
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3.1. Lotka–Volterra model

X → 2X ,

X + Y → 2Y ,

Y →O.
The induced kinetic differential equation of this reaction is

ẋ1 = (1 + u1)x1 − (1 + u2)x1x2,

ẋ2 = (1 + u2)x1x2 − (1 + u3)x2.

The unique positive equilibrium of the uncontrolled system is (1, 1) and matrix γ has
rank 2; thus the reaction is locally controllable.

3.2. Generalized Lotka–Volterra model

X (i)→ 2X (i) for i = 1, . . . , l,
X (j)→O for j = l + 1, . . . ,M ,

X (i) + X (j)→ 2X (j) for i = 1, . . . , l and j = l + 1, . . . ,M.

This model can be obtained by generalizing the previous predator–prey model to the
case when there are l preys and M−l predators present. To make the formulas simpler
we only display the uncontrolled system

ẋ1 = x1 − x1xl+1 − · · · − x1xM ,
...

ẋl = xl − xlxl+1 − · · · − xlxM ,

ẋl+1 =−xl+1 + x1xl+1 + · · · + xlxl+1,
...

ẋM =−xM + x1xM + · · ·+ xlxM .

Apart from the trivial zero equilibrium, the set of equilibra of the above system can
be obtained by requiring the conditions x∗1 + · · · + x∗l = 1 and x∗l+1 + · · · + x∗M = 1.
Thus the above system has positive equilibria, and one can notice that matrix γ has
rank M . Applying our results we get that the generalized Lotka–Volterra model is
locally controllable.

3.3. Oregonator (I)

Y →X ,

X + Y →O,

X → 2X + Z,

2X →O,

Z →Y.



Gy. Farkas / Local controllability of reactions 9

The induced kinetic differential equation of the above reaction is the following:

ẋ1 = (1 + u1)x2 − (1 + u2)x1x2 + (1 + u3)x1 − 2(1 + u4)x2
1,

ẋ2 =−(1 + u1)x2 − (1 + u2)x1x2 + (1 + u5)x3,

ẋ3 = (1 + u3)x1 − (1 + u5)x3.

As an easy calculation shows, the unique positive equilibrium of the uncontrolled
system is

x∗ =

(
3−
√

5√
5− 1

,
3−
√

5
2

,
3−
√

5√
5− 1

)
and rank(γ) = 3;

thus this reaction is locally controllable.
There exist a series of “stoichiometrically equivalent” models of the Belousov–

Zhabotinsky reaction, all of which are called Oregonator. One of them is when instead
of the original 3rd reaction step we write

X →Z.

It is very instructive to investigate the reaction with this 3rd reaction step because this
modification destroys the applicability of our results. Namely, the obtained uncon-
trolled system dos not have any positive equilibrium; furthermore, the only nonnega-
tive equilibrium is the origin. If we calculate matrix B we get the zero matrix; thus
the sufficient condition of local controllability is not satisfied in this case.

3.4. Oregonator (II)

Y →X ,

X + Y →O,

X → 2X ,

2X →O.

The induced kinetic differential equation of Oregonator (II) is the following system:

ẋ1 = (1 + u1)x2 − (1 + u2)x1x2 + (1 + u3)x1 − 2(1 + u4)x2
1,

ẋ2 =−(1 + u1)x2 − (1 + u2)x1x2.

The uncontrolled system has no positive equilibrium but has a unique non-zero non-
negative equilibrium, namely x∗ = (1/2, 0). Now we cannot apply our results; we
have to calculate matrix A and B to get

B =

(
0 0 1/2 −1/2
0 0 0 0

)
and

A =

(
−1 1/2
0 −3/2

)
.
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One can notice that rank(B) 6= rank(γ) in this case. Since rank[B|AB] = 1, the
sufficient condition of local controllability is not satisfied.

3.5. CIMA reaction

This reaction is not a mass action type reaction, but it can be seen that our results
can be applied according to the remark at the end of section 2.2. Now we write the
reaction rates above the reaction steps:

O r1−→X ,

X r2−→Y ,

4X + Y r3−→O,

where

r1 = 1 + u1, r2 = (1 + u2)x2, r3 = (1 + u3)
x1x2

u+ x2
1

,

and u is a positive constant. The induced kinetic differential equation of the system is

ẋ1 = (1 + u1)− (1 + u2)x1 − 4(1 + u3)
x1x2

u+ x2
1

,

ẋ2 = (1 + u2)x2 − (1 + u3)
x1x2

u+ x2
1

.

As an easy calculation shows, if u < 1/4 then the uncontrolled system has positive
equilibrium and rank(γ) = 2; thus the CIMA reaction is locally controllable if u < 1/4.

We remark that the CIMA reaction is locally controllable even if we control only
the first reaction rate constant since condition (3) is satisfied.

3.6. Brusselator

O→X ,

X →O,

2X + Y → 3X ,

X →Y.

The induced kinetic differential equation is the following system:

ẋ1 = (1 + u1)− (1 + u2)x1 + (1 + u3)x2
1x2 − (1 + u4)x1,

ẋ2 =−(1 + u3)x2
1x2 + (1 + u4)x1.

The unique positive equilibrium of the uncontrolled system is (1, 1) and rank(γ) = 2;
thus the reaction is locally controllable.

Using condition (3) we get that the above reaction is locally controllable by
controlling only the first reaction rate constant.
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3.7. Triangle reaction

X →Y ,

Y →Z ,

Z→X .

The induced kinetic differential equation is the following:

ẋ1 =−(1 + u1)x1 + (1 + u3)x3,

ẋ2 = (1 + u1)x1 − (1 + u2)x2,

ẋ3 = (1 + u2)x2 − (1 + u3)x3.

The uncontrolled system has many positive equilibrium points, but all of them have
the same form (a, a, a), where a is an arbitrary positive constant. In order to apply
our results we should get rank(γ) = 3, but in this case matrix γ has rank 2. Thus we
have to calculate matrices A and B. After this calculation we could see that

rank
[
B|AB|A2B

]
= 2,

or, in other words, the condition of local controllability in R3
+ is violated.

On the other hand, we can apply our results which claim local controllability in
manifolds with dimension smaller than M , since the subspace spanned by the columns
of matrix B is invariant for the matrix A. As a result we get that the reaction is locally
controllable into (a, a, a) in the reaction simplex belonging to vector (a, a, a).

3.8. Ivanova reaction

X + Y → 2Y ,

Y + Z → 2Z,

Z + X → 2X .

The induced kinetic differential equation is

ẋ1 =−(1 + u1)x1x2 + (1 + u3)x1x3,

ẋ2 = (1 + u1)x1x2 − (1 + u2)x2x3,

ẋ3 = (1 + u2)x2x3 − (1 + u3)x1x3.

The positive equilibrium points of the uncontrolled system are x∗ = (a, a, a) again,
where a is an arbitrary positive constant, but rank(γ) = 2; thus we cannot apply our
results. After calculating matrices A and B we get rank[B|AB|A2B] = 2, and the
condition of local controllability is not satisfied.

Since matrix A is invariant for the subspace spanned by the columns of matrix B,
the reaction is locally controllable in the reaction simplex belonging to the positive
equilibrium.
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3.9. Explodator

X → 2X ,

X + Y →Z ,

Z→ 2Y ,

Y →O.
The induced kinetic differential equation is the following system:

ẋ1 = (1 + u1)x1 − (1 + u2)x1x2,

ẋ2 =−(1 + u2)x1x2 + 2(1 + u3)x3 − (1 + u4)x2,

ẋ3 = (1 + u2)x1x2 − (1 + u3)x3.

The only nonnegative equilibrium is x∗ = (0, 0, 0) and matrix B is the zero matrix;
thus the local controllability condition is violated.

3.10. Michaelis–Menten reaction

X + Y →Z ,

Z→X + Y ,

Z→X + V.
The induced kinetic differential equation is

ẋ1 =−(1 + u1)x1x2 + (1 + u2)x3 + (1 + u3)x3,

ẋ2 =−(1 + u1)x1x2 + (1 + u2)x3,

ẋ3 = (1 + u1)x1x2 − (1 + u2)x3 − (1 + u3)x3,

ẋ4 = (1 + u3)x3.

There are two types of the nonnegative equilibria, namely x∗ = (a, 0, 0, b) or x∗ =
(0, a, 0, b). The calculation shows in every case that matrix B is the zero matrix again.

4. Discussion, open problems

We start with some general remarks. Throughout the paper, the condition of
existence of at least one positive equilibrium played a central role in our results. On
the other hand, it is enough to know that the positive equilibrium exists since we did
not use the coordinates of the positive equilibrium explicitly. According to our results,
one can notice that one could get the rank of matrix B without calculating explicitly
the equilibrium.

As a trivial consequence of theorem 8 we mention that if we make a reaction step
reversible such that the obtained reaction also has positive equilibrium we cannot get
rank(B̃) = M when the original reaction has matrix B with smaller rank than M . In
other words, if we are interested in controllability in dimension M we cannot influence
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the satisfaction of our condition by making reaction steps reversible in the previous
case.

One can think that obtaining rank(B) = M is a positive result. It is not the case
when we investigate local controllability in manifolds with dimension smaller than M .
In this case we cannot even apply theorem 4.

Now we formulate some open problems. It would be interesting to investigate
some other possible choices of the control parameters. To consider matrix A is not as
simply as to consider matrix B. One could ask what kind of further conditions could
be derived by considering matrix A.

The other part of the open problems is when we build up another model for
chemical reactions. If we deal with diffusion or with a stochastic model it would be
useful to investigate controllability questions. Furthermore, if we could claim some-
thing about controllability of reactions with diffusion or something about stochastic
models, it would be very interesting to compare this new results to the results obtained
by investigating the usual deterministic model.

The question of local observability of chemical reactions will be (partially) an-
swered in a forthcoming paper.
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